BREATHING AND EXCHANGE OF GASES

RESPIRATORY ORGANS:

- Direct respiration by diffusion from the environment sponges, coelenterates, flat worms etc.
- Cutaneous or by skin earthworm.
- Tracheal system insects.
- Gills aquatic arthropods mollusks
- Lungs terrestrial forms.

HUMAN RESPIRATORY SYSTEM:

Figure 17.1 Diagrammatic view of human respiratory system (Sectional view of the left lung is also shown)

- External nostril opens into the nasal chamber through nasal passage.
- The nasal chamber opens into the **nasopharynx**.
- Nasopharynx opens through **glottis** of the **larynx** into the **trachea**.
- Larynx is a cartilaginous box which produce sound hence called **sound box**.
- Cartilaginous **epiglottis** covers the glottis during swallowing to prevent entry of food into trachea.
- Trachea is a straight tube extending up to themed-thoracic cavity, which divides into right and left primary **bronchi** at the level of 5th thoracic vertebra.
- Each bronchus undergoes repeated divisions to form the secondary and tertiary bronchi and bronchioles ending up in very thin **terminal bronchioles**.
- Trachea, primary, secondary and tertiary bronchi and initial bronchioles are supported by cartilaginous rings.

- Each terminal bronchiole gives rise to a number of very thin, irregular-walled and vascularised bags like structures called **alveoli**.
- The branching network of bronchi, bronchioles and alveoli comprises the lungs.
- There are two lungs which are covered by a double layered pleura, with pleural fluid in them.
- Lungs are situated in the thoracic chamber which is anatomically a air tight chamber.
- The thoracic chamber is formed
 - o Dorsally by vertebral column.
 - Ventrally by sternum.
 - Laterally by ribs.
 - o On the lower side by dome shaped diaphragm.
- Respiration involves in following steps
 - Breathing or pulmonary ventilation by which atmospheric air is drawn in and CO₂ rich alveolar air is released out.
 - o Diffusion of gases (O₂ and CO₂) across alveolar membrane.
 - Transport of respiratory gases by blood.
 - o Diffusion of O₂ and CO₂ between blood and tissues.
 - \circ Utilization of O_2 by the cells for catabolic reactions and resultant release of CO_2 .

MECHANISM OF BREATHING:

Inspiration:

- Intake of atmospheric air into the lungs.
- It occurs if the pressure within the lungs (intra-pulmonary pressure) is lower than the atmospheric pressure.
- Contraction of diaphragm which increases the volume of thoracic chamber in the anterior posterior axis.
- The contraction of external intercostals muscles lifts up the ribs and the sternum causing an increase in the volume of thoracic chamber in the dorso ventral axis.
- It causes an increase in pulmonary volume decrease the intra-pulmonary pressure to less than the atmospheric pressure.
- It forces the air out side to move in to the lungs, i.e, **inspiration**.

Expiration:

- Relaxation of diaphragm and inter-costal muscles returns the diaphragm and sternum to their normal positions and reduce the thoracic and pulmonary volume.
- It increases in intrapulmonary pressure slightly above the atmospheric pressure.
- It causes the expulsion of air from the lungs, i.e, **expiration**.
- A healthy man breathes 12-16 times/minutes.
- The volume of air involved in breathing is estimated by **spirometer**.

Respiratory Volumes and Capacities:

- **Tidal volume**: volume of air inspired or expired during a normal breathing. It is about 500 ml.
- **Inspiratory reserve volume**: Additional volume of air, a person inspire by a forceful inspiration. It is about 2500-3000 ml.
- **Expiratory reserve volume**: Additional volume of air, a person expires by a forceful expiration. It is about 1000-1100 ml.
- **Residual volume**: Volume of air remaining in the lungs even after a forceful expiration. It is about 1200 ml.
- **Inspiratory capacity**: it includes tidal volume and Inspiratory reserve volume.
- **Expiratory capacity**: it includes tidal volume and expiratory reserve volume.
- **Functional residual capacity:** This includes ERV+RV.
- **Vital capacity:** IRV + TV + ERV.
- Total lung capacity: RV + IRV + TV + ERV

EXCHANGE OF GASES:

- Alveoli are the primary site of exchange of respiratory gases.
- Exchange of gases also takes place between blood and tissues.
- Exchange of O_2 and CO_2 take place in the pressure gradient, by simple diffusion.
- Pressure contributed by an individual gas in a mixture of gases is called the partial pressure and is represented by pO₂ for oxygen and pCO₂ for carbon dioxide.

Figure 17.3 Diagrammatic representation of exchange of gases at the alveolus and the body tissues with blood and transport of oxygen and carbon dioxide

Diffusion of O₂

- o pO_2 in alveolar air = 104 mm Hg.
- \circ pO₂ in venous blood = 40 mm Hg.
- o 02 diffuses from alveoli to venous blood.

• Diffusion of CO₂

- o pCO₂ is venous blood = 45 mm Hg.
- \circ pCO₂ is alveolar air = 40 mm Hg
- o CO₂ diffuses from venous blood to alveoli.
- Solubility of CO_2 is 20-25 times higher than that of O_2 ; the amount of CO_2 that can diffuse through the diffusion membrane per unit difference in partial pressure is much higher compared to that of O_2 .
- Respiratory membrane is formed by;

- Thin Squamous epithelium of the alveoli.
- o Endothelium of alveolar capillaries
- Basement membrane between them.

Figure 17.4 A Diagram of a section of an alveolus with a pulmonary capillary.

TRANSPORT OF GASES:

0

• Blood is the medium of transport of O₂ and CO₂.

- About 97 per cent of O₂ is transported by RBCs in the blood.
- 3 per cent of O_2 is transported in the plasma in dissolved state.
- 20-25 per cent of CO₂ transported in the RBC in the form of carbamino-haemoglobin.
- 70 percent CO₂ carried as bicarbonate ion in plasma.
- 7 percent CO₂ transported in dissolved state in plasm.

Transport of Oxygen:

- Haemoglobin is red coloured pigment present in the RBC.
- O2binds with hemoglobin reversibly to form oxy-hemoglobin.
- Each haemoglobin can binds maximum with **four O**₂ molecules.
- Binding of Oxygen with haemoglobin is primarily related with partial pressure of O_2 .
- Partial pressure of CO₂, hydrogen ion concentration (pH) and temperature are the factors that influence this binding.
- A sigmoid curve is obtained when percentage of saturation of hemoglobin with O_2 is plotted against the partial pressure of O_2 (p O_2). This curve is called **oxygen** dissociation curve.
- Condition favourable for binding of Hemoglobin with O₂ at alveolar level;
 - \circ High pO₂
 - Low H⁺ ion concentration.
 - o Low temperature.

- Condition favourable for dissociation of HbO₂ into Hb and O₂ at tissue level;
 - \circ Low pO₂
 - High H⁺ ion concentration.
 - High temperature.
- Every 100 ml of oxygenated blood can deliver around 5 ml of O₂ to the tissues under normal physiological conditions.

Figure 17.5 Oxygen dissociation curve

Transport of Carbon dioxide:

• 20-25 percent of CO₂ is carried out in the RBC by binding with the free amino group of haemoblobin by formation of carbamino-haemoglobin.

```
Carbonic anhydrase
CO.+ HbNH, HbNHCOOH (Carbamino haemoglobin)
```

- When pCO₂ is high and pO₂ is low as in the tissues, more binding of CO₂ occurs whereas, when the pCO₂ is low and pO₂ is high as in the alveoli, dissociation of CO₂ from carbamino-haemoglobin takes place.
- 70 per cent of CO₂ transported in the form of HCO₃- in the plasma.
- CO₂ from the tissue diffused into the plasma and along with the water it forms carbonic acid which dissociated into HCO₃- and H⁺. This reaction is catalysed by an

enzyme called **carbonic anhydrase** present in the plasma membrane of RBC and plasma.

REGULATION OF RESPIRATION:

- Specialized centre present in the medulla region of the brain called respiratory rhythm centre is primarily responsible for regulation of breathing.
- Pneumotaxis centre of pons region of brain has moderate regulation.
- Neural signal from this centre can reduce the duration of inspiration and alter the rate of respiration.
- Chemosensitive area adjacent to rhythm centre is sensitive to CO₂ and H⁺ ion.
- Receptors associated with aortic arch and carotid artery also can recognize changes in the CO₂ and H⁺ concentration and send necessary signals to the rhythm centre for remedial actions.

DISORDERS OF REPIRATORY SYSTEM:

- **Asthma**: is a difficulty in breathing causing wheezing due to inflammation of bronchi and bronchioles.
- **Emphysema**: a chronic disorder in which alveolar walls are damaged due to which respiratory surface is decreased. It caused due to smoking.